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Abstract

Composites made from two linear isotropic elastic materials are considered. It is assumed that only the volume fraction
of each elastic material is known. The composite is subjected to a uniform hydrostatic strain. For this case lower bounds on
all rth moments of the dilatational strain field inside each phase are obtained for r P 2. A lower bound on the maximum
value of the dilatational strain field is also obtained. These bounds are given in terms of the volume fractions of the com-
ponent materials. All of these bounds are shown to be the best possible as they are attained by the dilatational strain field
inside the Hashin–Shtrikman coated sphere assemblage. The bounds provide a new opportunity for the assessment of the
local dilatational strain in terms of a statistical description of the microstructure.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Failure initiation in composite materials is a
multi-scale phenomena. Central to the analysis is
the assessment of the local stress and strain fields
generated by macroscopic forces. Quantities sensi-
tive to local field behavior include higher order
moments of the stress and strain fields inside the
composite. These quantities have seen extensive
application in the theoretical analysis of material
failure, see Kelly and Macmillan (1986). Failure cri-
teria are often associated with the deviatoric part of
the elastic strain tensor. However critical dilata-
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tional deformation can preceed critical deviatoric
deformation in polymers, see Asp et al. (1996).
The dilatational strain has recently been incorpo-
rated into failure criteria for epoxy matrix compos-
ites seen in aircraft, see Gosse and Christensen
(2001).

The dilatational strain measures the local volu-
metric change associated with the local strain field
and is given by

trf�ðxÞg=3 ¼ ð�11ðxÞ þ �22ðxÞ þ �33ðxÞÞ=3. ð1:1Þ

For planar elastic problems the dilatational strain
reduces to tr{�(x)}/2 = (�11(x) + �22(x))/2. Both
two dimensional and fully three dimensional prob-
lems are treated here and the associated dilatational
strain is written as
.
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trf�g=d; ð1:2Þ
where d = 2 or d = 3 corresponds to two dimen-
sional or three dimensional elasticity, respectively.

Here, we consider a cube Q filled with two line-
arly elastic materials. Only the volume fractions
and the elastic properties of the two phases are
known. No other assumptions on the configuration
of the two elastic materials inside the cube are made.
The subdomains occupied by materials one and two
are denoted by Q1 and Q2, respectively. The indica-
tor function of material one is denoted by v1 and
takes the value one inside Q1 and zero outside.
The indicator function of material two is given by
v2 and v2 = 1 � v1. A constant hydrostatic strain
field is applied to the cube and we consider the
moments of the dilatational part of the strain field
inside each phase given by

hv1jtrf�ðxÞg=djri1=r and hv2jtrf�ðxÞg=djri1=r

ð1:3Þ
for 2 6 r <1 and d = 2,3. Here angle brackets hÆi
denote the volume average over the cube. We also
consider the L1 norms given by

kjtrf�ðxÞg=djkL1ðQ1Þ ¼ lim
r!1
hv1jtrf�ðxÞg=djri1=r

;

kjtrf�ðxÞg=djkL1ðQ2Þ ¼ lim
r!1
hv2jtrf�ðxÞg=djri1=r

;

kjtrf�ðxÞg=djkL1ðQÞ ¼ lim
r!1
hjtrf�ðxÞg=djri1=r.

ð1:4Þ
In this paper, optimal lower bounds on the

moments of the dilatational strain are found when
the composite is subjected to applied strains of the
hydrostatic type �� ¼ �0I , where I is the identity
and �0 is a constant. In Section 4, we present explicit
optimal lower bounds on the moments (1.3) and L1

norms (1.4) that are given in terms of the volume
fractions, elastic properties of the materials and
the imposed strain �0. It is shown that the minimiz-
ing configurations are given by Hashin and Shtrik-
man (1962) coated sphere or cylinder assemblages
depending upon whether d = 3 or d = 2, respec-
tively. These configurations are described in detail
in Section 6. The approach presented here is moti-
vated by the observations recently used to obtain
optimal lower bounds on all higher moments of
the electric field for two-phase random dielectrics,
see Lipton (2004).

It is pointed out that the lower bounds on the
moments (1.3) and L1 norms (1.4) given in Section
4 can be used in the strain based analysis of failure
initiation in composites (Asp et al., 1996; Gosse and
Christensen, 2001). For example, the lower bounds
on the L1 norms (1.4) given by (4.5), (4.6), (4.8),
(4.9), for r =1, provide explicit conditions on the
applied strain for which the local strain will lie out
side the strength domain of the matrix phase inside
a fiber-epoxy composite. For other composite sys-
tems requiring a Weibull-type failure analysis, the
lower bounds on the moments (1.3) given by (4.5),
(4.6), (4.8), (4.9) deliver lower bounds on the failure
probability of the composite material.

Earlier investigations into the behavior of local
fields inside elastic composites have identified the
optimal inclusion shapes that minimize the maxi-
mum eigenvalue of the local stress for a given
constant applied stress. These investigations are car-
ried out in the context of two-phase linear elasticity.
The work presented in Wheeler (1993) provides an
optimal lower bound on the supremum of the maxi-
mum principle stress for a single simply connected
stiff inclusion in an infinite matrix subject to a
remote stress at infinity. The optimal shapes are
given by ellipsoids. The work presented in Grabov-
sky and Kohn (1995) provides an optimal lower
bound on the supremum of the maximum principle
stress for two-dimensional periodic composites con-
sisting of a single simply connected stiff inclusion in
the period cell. The bound is given in terms of the
area fraction of the included phase and for an expli-
cit range of prescribed average stress the optimal
inclusions are given by Vigdergauz (1994) shapes.
2. Mathematical formulation of the problem

The composite is contained inside a cube Q and
no constraints are placed upon the arrangement of
the two materials inside Q. The volume fractions
of materials one and two are denoted by h1 and
h2, respectively. It is supposed that Q is the period
cell for an infinite periodic medium. The elastic
stress and strain fields r(x) and �(x) inside the
two-phase material satisfy �ij(x) = (ui,j(x) + uj,i(x))/
2 and r(x) = C(x)�(x). Here C(x) is the local elastic-
ity tensor and ui,j is the derivative of the ith compo-
nent of the displacement along the jth direction. The
elasticity tensor of materials one and two are speci-
fied by the shear and bulk moduli l1, j1 and l2, j2,
respectively. With out loss of generality it is sup-
posed that l1 > l2. The equation of elastic equilib-
rium inside each phase is given by

divr ¼ 0. ð2:1Þ
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It is assumed that there is perfect contact between
the materials so that the displacement u and traction
rn are continuous across the two phase interface,
i.e.,

uj1 ¼ uj2 ;

rj1 n ¼ rj2 n.
ð2:2Þ

Here n is the unit normal to the interface pointing
into material 2 and the subscripts indicate the side
of the interface that the displacement and traction
fields are evaluated on. The volume average of a
quantity q over the cube Q is denoted by hqi and
for two-dimensional elastic problems the domain
Q becomes the unit square and volume averages
are replaced by area averages. The average strain
field h�i satisfies h�i ¼ �� where �� is an applied con-
stant strain. Here �� can be interpreted as the im-
posed macroscopic strain. The elastic displacement
u inside the composite is such that the difference
uiðxÞ � ��ijxj is periodic on Q. The effective elastic
tensor Ce relating the average stress to the imposed
macroscopic strain is defined by

hri ¼ Ce�. ð2:3Þ
3. Lower bounds on the dilatational strain field and

sufficient conditions for optimality

In this section, we establish lower bounds on the
dilatational strain field inside each material. Suffi-
cient conditions are identified that guarantee that
lower bounds are attained. These conditions are
used to establish the optimality of the bounds pre-
sented in Section 4.

The fourth order identity is denoted by I and
Iijkl = 1/2(dikdjl + dildjk). The projection onto the
dilatational part of the strain is denoted by PH

and is given explicitly by

PH
ijkl ¼

1

d
dijdkl. ð3:1Þ

The projection onto the deviatoric part of the strain
is given by PD = I � PH. The isotropic elasticity
tensor associated with each component material is
written as

Ci ¼ 2liPD þ djiPH for i ¼ 1; 2; ð3:2Þ

where d = 2 for planar elastic problems and d = 3
for the three dimensional problem.

For any symmetric d · d strain field g(x) defined
on Q one has
hv2ðxÞPHð�ðxÞ � gðxÞÞ : ð�ðxÞ � gðxÞÞiP 0. ð3:3Þ

Setting g equal to a constant strain �g one obtains

hv2ðxÞPH�ðxÞ : �ðxÞi
P 2PH�g : hv2ðxÞ�ðxÞi � h2P

Hg : �g. ð3:4Þ

Optimizing over �g gives

hv2ðxÞPH�ðxÞ : �ðxÞi

P
1

h2

PHhv2ðxÞ�ðxÞi : hv2ðxÞ�ðxÞi. ð3:5Þ

It now easily follows from (3.1) that

v2ðxÞ
trf�ðxÞg

d

����
����
2

* +
P

1

h2

v2ðxÞ
trf�ðxÞg

d

� �����
����
2

.

ð3:6Þ

Expanding (2.3) one obtains

Ce�� ¼ hðC1 þ v2ðC2 � C1ÞÞ�ðxÞi. ð3:7Þ

Rearranging terms and taking the trace gives

trfðC2 � C1Þ�1ðCe � C1Þ��g ¼ hv2ðxÞtrf�ðxÞgi.
ð3:8Þ

From (3.6) one obtains

v2ðxÞ
trf�ðxÞg

d

����
����
2

* +

P
1

d2h2

trfðC2 � C1Þ�1ðCe � C1Þ��g
��� ���2. ð3:9Þ

For p and q such that p P 1 and 1/p + 1/q = 1,
an elementary estimate gives

h1=q
2 v2ðxÞ

trf�ðxÞg
d

����
����
2p

* +1=p

P v2ðxÞ
trf�ðxÞg

d

����
����
2

* +

ð3:10Þ
and it follows that:

v2ðxÞ
trf�ðxÞg

d

����
����
2p

* +1=p

P
h1=p

2

d2h2
2

trfðC2 � C1Þ�1ðCe � C1Þ��g
��� ���2; ð3:11Þ

for 1 6 p 61. From (3.8) one easily sees that the
lower bound given by (3.11) is optimal when the
dilatational strain field tr{�}/d is constant inside
material two.
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Similar arguments give the lower bound

v1ðxÞ
trf�ðxÞg

d

����
����

2
* +

P
1

d2h1

jtrfðC1�C2Þ�1ðCe�C2Þ��gj2.

ð3:12Þ

and it follows that:

v1ðxÞ
trf�ðxÞg

d

����
����
2p

* +1=p

P
h1=p

1

d2h2
1

jtrfðC1 � C2Þ�1ðCe � C2Þ��gj2; ð3:13Þ

for 1 6 p 61. Here equality holds in (3.13) when
the dilatational strain field is constant inside phase
one.

4. Optimal lower bounds on the moments of

dilatational strain field for composites subject to

hydrostatic strain

Optimal lower bounds on the moments and L1

norms of the dilatational strain field are presented.
The bounds are given in terms of the volume frac-
tions of materials one and two. The particular form
of the lower bounds depends upon whether the elas-
tic materials are well ordered, j1 > j2 or non-well
ordered j1 < j2.

We introduce

L1 ¼ j2 þ 2l2ðd � 1Þ=d
h1j2 þ h2j1 þ 2l2ðd � 1Þ=d

; ð4:1Þ

L2 ¼ j1 þ 2l1ðd � 1Þ=d
h1j2 þ h2j1 þ 2l1ðd � 1Þ=d

; ð4:2Þ

M1 ¼ j2 þ 2l1ðd � 1Þ=d
h1j2 þ h2j1 þ 2l1ðd � 1Þ=d

ð4:3Þ

and

M2 ¼ j1 þ 2l2ðd � 1Þ=d
h1j2 þ h2j1 þ 2l2ðd � 1Þ=d

. ð4:4Þ

The lower bounds and the associated optimal con-
figurations are presented in the following two
subsections.

4.1. Optimal lower bounds for the well ordered case

j1 > j2

For the well ordered case j1 > j2 and
L1
6 1 6 L2. The optimal lower bounds on the

moments of the dilatational strain are given by the
following results.
4.1.1. Optimal lower bounds on the moments of the

dilatational strain in material one

For fixed values of h1 and h2 and imposed macro-
scopic strain �0I the dilatational strain field tr{�(x)}/
d inside material one satisfies

j�0jh1=r
1 L1

6 hv1jtrf�ðxÞg=djri1=r for 2 6 r 61.

ð4:5Þ
Moreover for d = 2(3) the dilataional strain inside
material one for the coated cylinder (sphere) assem-
blage with core of material one and coating of mate-
rial two attains the lower bound (4.5) for every r in
2 6 r 61.

4.1.2. Optimal lower bounds on the moments of the

dilatational strain in material two

For fixed values of h1, h2, and imposed macro-
scopic strain �0I the dilatational strain field
tr{�(x)}/d inside material two satisfies

j�0jh1=r
2 L2

6 hv2jtrf�ðxÞg=djri1=r for 2 6 r 61.

ð4:6Þ
Moreover for d = 2(3) the dilatational strain inside
material two for the coated cylinder (sphere) assem-
blage with core of material two and coating of mate-
rial one attains the lower bound (4.6) for every r in
2 6 r 61.

4.1.3. Optimal lower bound on the L1 norm of the

dilatational strain

For fixed values of h1, h2, and imposed macro-
scopic strain �0I the dilatational strain field
tr{�(x)}/d satisfies

j�0jL2
6 kjtrf�ðxÞg=djkL1ðQÞ. ð4:7Þ

Moreover for d = 2(3) the dilatational strain inside
the coated cylinder (sphere) assemblage with core
of material two and coating of material one attains
the lower bound (4.7).

4.2. Optimal lower bounds for the non-well ordered
case j1 < j2

For j1 < j2 one has that M2
6 1 6M1. The opti-

mal lower bounds on the moments of the dilata-
tional strain are given by the following results.

4.2.1. Optimal lower bounds on the moments of the

dilatational strain in material one
For fixed values of h1 and h2 and imposed macro-

scopic strain �0I the dilatational strain field r{�(x)}/d
inside material one satisfies
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j�0jh1=r
1 M1

6 hv1jtrf�ðxÞg=djri1=r for 2 6 r 61.

ð4:8Þ

Moreover for d = 2(3) the dilatational strain inside
material one for the coated cylinder (sphere) assem-
blage with core of material two and coating of mate-
rial one attains the lower bound (4.8) for every r in
2 6 r 61.

4.2.2. Optimal lower bounds on the moments of the
dilatational strain in material two

For fixed values of h1, h2, and imposed macro-
scopic strain �0I the dilatational strain field
tr{�(x)}/d inside material two satisfies

j�0jh1=r
2 M2

6 hv2jtrf�ðxÞg=djri1=r for 2 6 r 61.

ð4:9Þ

Moreover for d = 2(3) the dilatational strain inside
material two for the coated cylinder (sphere) assem-
blage with core of material one and coating of mate-
rial two attains the lower bound (4.9) for every r in
2 6 r 61.

4.2.3. Optimal lower bound on the L1 norm of the

dilatational strain

For fixed values of h1, h2, and imposed macro-
scopic strain �0I the dilatational strain field
tr{�(x)}/d satisfies

j�0jM1
6 kjtrf�ðxÞg=djkL1ðQÞ. ð4:10Þ

Moreover for d = 2(3) the dilatational strain inside
the coated cylinder (sphere) assemblage with core
of material two and coating of material one attains
the lower bound (4.10).

5. Derivation of the lower bounds

In this section, we use the lower bounds given by
(3.11) and (3.13) to derive the lower bounds pre-
sented in Section 4. Recalling that �� ¼ �0I and using
(3.2) one easily calculates that the right hand side of
(3.11) is given by

h1=p
2

d2h2
2

jtrfðC2 � C1Þ�1ðCe � C1Þ�gj2

¼ h1=p
2

d2h2
2

j�0j2
jd�1CeI : I � dj1j2

jj1 � j2j2
; ð5:1Þ

where CeI : I ¼ Ce
ijkldijdkl. Similarly the right hand

side of (3.13) is given by
h1=p
1

d2h2
1

jtrfðC1 � C2Þ�1ðCe � C2Þ��gj2

¼ h1=p
1

d2h2
1

j�0j2
jd�1CeI : I � dj2j2

jj1 � j2j2
. ð5:2Þ

One has the bounds on the contraction C eI : I

given by Kantor and Bergman (1984)

d2j�HS 6 CeI : I 6 d2jþHS; ð5:3Þ
where j�HS and jþHS are the Hashin and Shtrikman
(1963) bulk modulus bounds given by

jþHS ¼ j1h1 þ j2h2 �
h1h2ðj2 � j1Þ2

j1h2 þ j2h1 þ 2 d�1
d l1

 !

ð5:4Þ
and

j�HS ¼ j1h1 þ j2h2 �
h1h2ðj2 � j1Þ2

j1h2 þ j2h1 þ 2 d�1
d l2

 !
.

ð5:5Þ

Kantor and Bergman (1984) point out that the the
bounds given by (5.3) hold both for the well ordered
case j1 > j2, l1 > l2 and the non-well ordered case
j1 < j2, l1 > l2.

For the well ordered case j1 > j2 one applies the
inequality (5.3) to (5.1) and (5.2) to find that

h1=p
2

d2h2
2

jtrfðC2 � C1Þ�1ðCe � C1Þ��gj2

P
h1=p

2

h2
2

j�0j2
jjþHS � j1j2

jj1 � j2j2
¼ h1=p

2 j�0j2ðL2Þ2 ð5:6Þ

and

h1=p
1

d2h2
1

jtrfðC1 � C2Þ�1ðCe � C2Þ�gj2

P
h1=p

1

h2
1

j�0j2
jj�HS � j2j2

jj1 � j2j2
¼ h1=p

1 j�0j2ðL1Þ2 ð5:7Þ

and the bounds (4.5) and (4.6) now follow easily
from (3.11) and (3.13).

To obtain (4.7) we recall (4.6) for r =1 to see
that

j�0jL2
6 kjtrf�ðxÞg=djkL1ðQ2Þ 6 kjtrf�ðxÞg=djkL1ðQÞ

ð5:8Þ
and (4.7) follows.

For the non-well ordered case j1 < j2 one applies
the inequality (5.3) to (5.1) and (5.2) to find that



Fig. 1. The unit square is filled with the Hashin–Shtrikman
coated cylinder assemblage.
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h1=p
2

d2h2
2

jtrfðC2 � C1Þ�1ðCe � C1Þ��gj2

P
h1=p

2

h2
2

j�0j2
jj�HS � j1j2

jj1 � j2j2
¼ h1=p

2 j�0j2ðM2Þ2 ð5:9Þ

and

h1=p
1

d2h2
1

jtrfðC1 � C2Þ�1ðCe � C2Þ��gj2

P
h1=p

1

h2
1

j�0j2
jjþHS � j2j2

jj1 � j2j2
¼ h1=p

1 j�0j2ðM1Þ2 ð5:10Þ

and the bounds (4.8) and (4.9) now follow easily
from (3.11) and (3.13).

To obtain (4.10) we recall (4.8) for r =1 to see
that

j�0jM1
6 kjtrf�ðxÞg=djkL1ðQ1Þ 6 kjtrf�ðxÞg=djkL1ðQÞ

ð5:11Þ
and (4.10) follows.

6. Optimality

In this section, it is shown that the lower bounds
presented in Section 4 are attained by the dilata-
tional strain fields inside the Hashin and Shtrikman
(1962) coated sphere and cylinder assemblages. The
coated cylinder assemblage is constructed as fol-
lows. A space filling configuration of disks of differ-
ent sizes ranging down to the infinitesimal is placed
inside the unit square Q. Each disk is then parti-
tioned into an annulus called the coating and a con-
centric disk called the core. The area fractions of
coating and core are the same for all disks. The unit
square Q filled with the coated cylinder assemblage
is illustrated in Fig. 1. The construction of the
coated sphere assemblage follows the same pattern.
A space filling configuration of spheres is placed
inside the unit cube. Each sphere is partitioned into
a spherical shell called the coating and a concentric
sphere called the core. Here the volume fractions of
coating and core are the same for every sphere.

The explicit formula for the bulk modulus for the
coated spheres construction was derived in Hashin
(1962). The formula for the bulk modulus for the
coated cylinders construction was given by Hashin
and Rosen (1964). It is well known from the work
of Hashin and Shtrikman (1963) that the associated
effective bulk moduli for the coated sphere assem-
blages attain the bulk modulus bounds j�HS and
jþHS. The analogous statements for the coated cylin-
der assemblages can be found in the work of Hashin
and Rosen (1964). It is pointed out that the dilata-
tional strain fields are constant inside the core phase
and inside the coating phase for the coated sphere
and cylinder assemblages. These observations
together with the optimality conditions presented
in Section 2 and the bounds given in Section 4 indi-
cate that the dilatational strain inside the coated
sphere and cylinder assemblages are extremal.

For reference, we list the effective bulk moduli
and dilatational strain fields for the coated sphere
and cylinder assemblages. The dilatational strain
fields are computed for an imposed hydrostatic
strain given by �0I. For assemblages with core of
material one and coating of material two the effec-
tive bulk modulus is given by j�HS, the dilatational
strain field inside the core is given by �0L1 and the
dilatational strain field inside the coating is given
by �0M2. For assemblages with core of material
two and coating of material one the effective bulk
modulus is given by jþHS, the dilatational strain field
inside the core is given by �0L2 and the dilatational
strain field inside the coating is given by �0M1. From
these observations, it is evident that the bounds 4.5,
4.6, 4.8 and 4.9 are attained by the dilatational
strain fields inside the coated sphere and coated
cylinder assemblages. For j1 > j2 one checks that
L2 > M1 and it follows that coated sphere and cylin-
der assemblages with a core of material two and
coating of material one have dilatational strains that
attain the lower bound (4.7). For j1 < j2 one checks
that L2 < M1 and it follows that coated sphere and
cylinder assemblages with a core of material two
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and coating of material one have dilatational strains
that attain the lower bound (4.10).
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